Counting Faces with Shellability

Ethan Sollenberger

Department of Mathematics University of Texas at Austin

Directed Reading Program, Spring 2022

Ethan Sollenberger Counting Faces with Shellability

ヘロン 人間 とくほ とくほ とう

Outline

- Polytopes
- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

(E) < E)</p>

ъ

Preliminaries Shellability

Polytopes Faces

Outline

- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

★ Ξ → ★ Ξ →

3

Polytopes Faces

What are Polytopes?

- V-polytopes : convex hulls
- *H*-polytopes : intersections of half-spaces
- A polytope can be presented in either fashion (non-trivial)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- d-simplex : convex hull of d + 1 affinely independent points
- standard d-simplex Δ_d : convex hull of the d + 1 unit vectors in ℝ^{d+1}

Figure: Example of a simplex: Δ_2 in \mathbb{R}^3

ヘロト 人間 ト ヘヨト ヘヨト

ъ

Preliminaries Shellability

Polytopes Faces

Outline

- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

ヘロア 人間 アメヨア 人口 ア

- An inequality of the form *a* · *x* ≤ *a*₀ is said to be *valid* if it is true for all *x* ∈ *P* a polytope.
- Given a valid inequality, a *face* is the subset $P \cap \{\vec{x} : \vec{a} \cdot \vec{x} = a_0\}$, i.e. where *equality* holds.

Figure: Examples of faces: a vertex and an edge

ヘロト ヘアト ヘビト ヘビト

Polytopes Faces

Euler's Polyhedron Formula

Theorem (Euler's Polyhedron Formula)

$$V - E + F = 2$$

where V, E, and F are the number of vertices (0-faces), edges (1-faces) and facets (2-faces) of a 3-polytope.

• Is there something similar in higher dimensions?

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Preliminaries Shellability

Polytopes Faces

Outline

- Polytopes
- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

◆□ > ◆□ > ◆豆 > ◆豆 > →

Polytopes Faces

Dehn-Sommerville Equations

Theorem (Dehn-Sommerville Equations)

The h-vector of the boundary of a simplicial d-polytope satisfies

$$h_k = h_{d-k}$$

where $h_k := \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}$

イロト イポト イヨト イヨト 一臣

Complexes Shellings

Outline

Dehn-Sommerville Equations

★ Ξ → ★ Ξ →

ъ

Complexes Shellings

Complexes

- A *polytopal complex* C : finite collection of polytopes
- A pure complex : all facets are the same dimension
- A simplicial complex : all faces are simplices
- A boundary complex $C(\partial P)$ = the facets of P

ヘロン 人間 とくほ とくほ とう

Complexes Shellings

Outline

- *h*-vectors
- Dehn-Sommerville Equations

(< 2)</p>

ъ

Complexes Shellings

Shellings

- A *shelling* of a pure polytopal complex is an ordering $F_1, F_2, \ldots F_s$ of its facets such that
 - **)** The boundary complex $C(\partial F_1)$ has a shelling
 - 2 The intersection of the facet F_j with the union of the previous facets is the beginning of a shelling of $C(\partial F_j)$

Figure: Some 2-complexes

< 17 ▶

★ 문 ► ★ 문 ►

Complexes Shellings

Properties

- A shelling of a boundary complex of a polytope is reversible.
- Polytopes are shellable.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Preliminaries f-vectors Shellability h-vectors Dehn-Sommerville Dehn-So

f-vectors h-vectors Dehn-Sommerville Equations

Outline

- Polytopes
- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

ヘロア 人間 アメヨア 人口 ア

	Preliminaries	f-vectors
	Shellability	
	Dehn-Sommerville	Dehn-Sommerville Equations
f-vectors		

- Let f_k be the number of k-faces of a polytopal complex C
- The *f*-vector of C is the vector $\vec{f} = (f_{-1}, f_0, \dots, f_d)$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

f-vectors h-vectors Dehn-Sommerville Equations

Euler-Poincaré Formula

Theorem (Euler-Poincaré Formula)

$$f_0 - f_1 + \dots + (-1)^{d-1} f_{d-1} = 1 - (-1)^d$$

Ethan Sollenberger Counting Faces with Shellability

ヘロト 人間 とくほとくほとう

₹ 990

Preliminaries f-vectors Shellability h-vectors Dehn-Sommerville Dehn-Sommerville Equatio

Outline

- Polytopes
- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

ヘロア 人間 アメヨア 人口 ア

	Preliminaries Shellability Dehn-Sommerville	<i>f-</i> vectors <i>h-</i> vectors Dehn-Sommerville Equations
Motivation		

- The *h*-vector arises from counting the number of parts of a given size of a partitionable simplicial complex
- Partitions can arise from shellings : *h*-vector independent of the shelling chosen

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

ъ

Preliminaries f-vectors Shellability h-vectors Dehn-Sommerville Dehn-Sommerville Equation

Defining *h*-vectors in general

Define the *h*-vector of a simplicial complex of dimension d - 1 to be

$$\vec{h}(\mathcal{C}) = (h_0, h_1, \ldots, h_d)$$

where

$$h_k := \sum_{i=0}^k (-1)^{k-i} {d-i \choose d-k} f_{i-1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Preliminaries f-vectors Shellability h-vectors Dehn-Sommerville Dehn-Sommerville Equations

Outline

- Polytopes
- Faces
- 2 Shellability
 - Complexes
 - Shellings
- 3 Dehn-Sommerville
 - f-vectors
 - h-vectors
 - Dehn-Sommerville Equations

ヘロア 人間 アメヨア 人口 ア

Preliminaries f-vectors Shellability h-vectors Dehn-Sommerville Dehn-Sommerville Equations

Dehn-Sommerville Equations

Theorem (Dehn-Sommerville Equations)

The h-vector of the boundary of a simplicial d-polytope satisfies

$$h_k = h_{d-k}$$

ヘロン 人間 とくほ とくほ とう

Preliminaries f-vectors Shellability Dehn-Sommerville Dehn-Sommerville Equations
Proof (McMullen 1970)

- Shellings of boundary complexes of polytopes are reversible, so whatever *F_j* contributes to the original shelling at *h_k*, it also contributes to the reverse shelling at *h_{d-k}*.
- But the *h*-vector is independent of the shelling chosen, so $h_k = h_{d-k}$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- When k = 0, we get the famous Euler-Poincaré formula.
- We can find an upper bound on the number of k-faces of a d-polytope with n vertices (McMullen 1970)

イロト イポト イヨト イヨト